Strong Homology Jeffrey Bergfalk Winter School February 2016 ### Theorem (Eilenberg Steenrod 1945) Exactly one homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of finite CW-complexes. 2016 ### Theorem (Eilenberg Steenrod 1945) Exactly one homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of finite CW-complexes. #### Formal definition [edit] The Ellenberg–Steenrod axioms apply to a sequence of functors H_n from the category of pairs (X,A) of topological spaces to the category of abelian groups, together with a natural transformation $\partial: H_i(X,A) \to H_{i-1}(A)$ called the **boundary map** (here $H_{i-1}(A)$ is a shorthand for $H_{i-1}(A,\varnothing)$). The axioms are: - 1. Homotopy: Homotopic maps induce the same map in homology. That is, if $g:(X,A) \to (Y,B)$ is homotopic to $h:(X,A) \to (Y,B)$, then their induced maps are the same. - 3. Dimension: Let P be the one-point space; then $H_n(P)=0$ for all $n\neq 0$. - 4. Additivity: If $X=\coprod X_{\alpha}$, the disjoint union of a family of topological spaces X_{α} , then $H_n(X)\cong\bigoplus H_n(X_{\alpha})$. - 5. **Exactness**: Each pair (X, A) induces a long exact sequence in homology, via the inclusions $i:A\to X$ and $j:X\to (X,A)$: $$\cdots \rightarrow H_n(A) \xrightarrow{i_n} H_n(X) \xrightarrow{j_n} H_n(X, A) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots$$ If P is the one point space then $H_0(P)$ is called the **coefficient group**. For example, singular homology (taken with integer coefficients, as is most common) has as coefficients the integers. Bergfalk #### Definition A homology theory H_* is additive if for every n and every $$X = \coprod_{\alpha \in A} X_{\alpha}$$ the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism $$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$ #### Definition A homology theory H_* is additive if for every n and every $$X = \coprod_{\alpha \in A} X_{\alpha}$$ the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism $$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$ ### Theorem (Milnor 1960) Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes. #### Definition A homology theory H_* is additive if for every n and every $$X = \coprod_{\alpha \in A} X_{\alpha}$$ the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism $$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$ ### Theorem (Milnor 1960) Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes. In other words, there's exactly one way to extend Eilenberg and Steenrod's H_* continuously. #### Definition A homology theory H_* is additive if for every n and every $$X = \coprod_{\alpha \in A} X_{\alpha}$$ the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism $$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$ ### Theorem (Milnor 1960) Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes. In other words, there's exactly one way to extend Eilenberg and Steenrod's H_* continuously. Henceforth let H_* denote this (unique) extension to CW. A number of extensions of H_* in turn have been proposed. A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* : $m{0}$ \bar{H}_* equals H_* on CW. - \bullet \bar{H}_* equals H_* on CW. - \bullet \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X,A). - \bullet \bar{H}_* equals H_* on CW. - \bullet \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X,A). - \bullet \bar{H}_* is a Steenrod-type homology theory. - \bullet \bar{H}_* equals H_* on CW. - \bullet \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X,A). - **3** \bar{H}_* is a Steenrod-type homology theory. - $m{\Phi}_*$ is strong-shape-invariant. A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* : - \bullet \bar{H}_* equals H_* on CW. - **Q** \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A). - **3** \bar{H}_* is a Steenrod-type homology theory. - $m{\Phi}_*$ is strong-shape-invariant. It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* : - \bullet \bar{H}_* equals H_* on CW. - **Q** \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A). - \bullet \bar{H}_* is a Steenrod-type homology theory. - $m{\Phi}_*$ is strong-shape-invariant. It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? (1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* : - \bullet \bar{H}_* equals H_* on CW. - 2 \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A). - **3** \bar{H}_* is a Steenrod-type homology theory. - **4** \bar{H}_* is strong-shape-invariant. It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? (1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X. $$\bar{H}_2(X)=0.$$ A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* : - \bullet \bar{H}_* equals H_* on CW. - 2 \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A). - **3** \bar{H}_* is a Steenrod-type homology theory. - **4** \bar{H}_* is strong-shape-invariant. It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? (1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X. $$\bar{H}_2(X)=0.$$ Mardešić and Prasolov directly computed, though, that $\bar{H}_2(X)$ is the quotient of coherent families by trivial families; $\bar{H}_2(X) = 0$, in other words, iff every coherent family is trivial. A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* : - \bullet \bar{H}_* equals H_* on CW. - 2 \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A). - **3** \bar{H}_* is a Steenrod-type homology theory. - $m{\Phi}_*$ is strong-shape-invariant. It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? (1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X. $$\bar{H}_2(X)=0.$$ Mardešić and Prasolov directly computed, though, that $\bar{H}_2(X)$ is the quotient of coherent families by trivial families; $\bar{H}_2(X)=0$, in other words, iff every coherent family is trivial. But this, as they and others would show, is a question independent of ZFC. # Coherence vs. Triviality