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Theorem (Eilenberg Steenrod 1945)

Exactly one homology theory H. satisfies the Eilenberg-Steenrod axioms on the category
of finite CW-complexes.
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Theorem (Eilenberg Steenrod 1945)

Exactly one homology theory H. satisfies the Eilenberg-Steenrod axioms on the category
of finite CW-complexes.

Formal definition [edit]

The Eilenberg-Steenrod axioms apply to a sequence of functors F1,, from the category of pairs (X, A) of topological spaces to the category of abelian groups, together
with a natural transformation ¢} ; H;(X, A) — H;_;(A)called the boundary map (here H;_1(A) is a shorthand for H; _1(A,2)). The axioms are:

1. Homotopy: Homotopic maps induce the same map in homology. Thatis, if g : (X! A) — (K B) is homotopic to . ; (X, A) — (Yl B), then their
induced maps are the same.

o

Excision: If (X, A) is a pair and Uis a subset of X such that the closure of Uis contained in the interior of A, then the inclusion map
i: (X — U, A —U)— (X, A)induces an isomorphism in homology.
Dimension: Let P be the one-point space: then F,,( ) = Oforalln # 0.

. Additivity: \lX = H Xn, the disjoint union of a family of topological spaces X, then Hﬂ(X) = @ H, (Xu)
a

o s W

a
Exactness: Each pair (X, A) induces a long exact sequence in homology, via the inclusions 3 : 4 — X and j: X — (Xl ;1)

s H,(A) 2 Ho(X) 48 Ho (X, A4) BH, ((A) = -
If Pis the one point space then Hy(P) is called the coefficient group. For example, singular homology (taken with integer coefficients, as is most common) has as
coefficients the integers.
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Additivity

A homology theory H. is additive if for every n and every
X =] X
a€cA
the inclusion maps iy : Xo — X induce an isomorphism

i €D Ha(Xa) = Ha( [ Xa)

acA acA
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Definition

A homology theory H. is additive if for every n and every
X =] X
a€cA
the inclusion maps iy : Xo — X induce an isomorphism
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Theorem (Milnor 1960)

Exactly one additive homology theory H. satisfies the Eilenberg-Steenrod axioms on the
category of CW-complexes.
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Definition

A homology theory H. is additive if for every n and every
X =] X
a€cA
the inclusion maps iy : Xo — X induce an isomorphism

i €D Ha(Xa) = Ha( [ Xa)

acA a€cA

Theorem (Milnor 1960)

Exactly one additive homology theory H. satisfies the Eilenberg-Steenrod axioms on the
category of CW-complexes.

In other words, there's exactly one way to extend Eilenberg and Steenrod’s H.
continuously.
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Definition

A homology theory H. is additive if for every n and every
X =] X
a€cA
the inclusion maps iy : Xo — X induce an isomorphism

i €D Ha(Xa) = Ha( [ Xa)

acA a€cA

Theorem (Milnor 1960)

Exactly one additive homology theory H. satisfies the Eilenberg-Steenrod axioms on the
category of CW-complexes.

In other words, there's exactly one way to extend Eilenberg and Steenrod’s H.
continuously.

Henceforth let H, denote this (unique) extension to CW.
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A number of extensions of H. in turn have been proposed.
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strong homology H.:
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© H. is a Steenrod-type homology theory.
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A number of extensions of H. in turn have been proposed. Prominent among these is
strong homology H.:

@ H. equals H. on CW.
@ H. satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
© H. is a Steenrod-type homology theory.
@ H, is strong-shape-invariant.
It was against this background that Sibe Mardesi¢ and Andrei Prasolov asked

Is strong homology additive?
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A number of extensions of H. in turn have been proposed. Prominent among these is
strong homology H.:

@ H. equals H. on CW.
@ H. satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
© H. is a Steenrod-type homology theory.

@ H, is strong-shape-invariant.

It was against this background that Sibe Mardesi¢ and Andrei Prasolov asked

Is strong homology additive?
(1) and (2) imply H, additive on CW, and for finite sums, respectively. So Mardesi¢ and

Prasolov began by considering the strong homology of an infinite countable sum Y of
Hawaiian earrings X.

H(X) = 0.
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A number of extensions of H. in turn have been proposed. Prominent among these is
strong homology H.:

@ H. equals H. on CW.
@ H. satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
© H. is a Steenrod-type homology theory.

@ H, is strong-shape-invariant.

It was against this background that Sibe Mardesi¢ and Andrei Prasolov asked

Is strong homology additive?
(1) and (2) imply H, additive on CW, and for finite sums, respectively. So Mardesi¢ and

Prasolov began by considering the strong homology of an infinite countable sum Y of
Hawaiian earrings X.

Fx(X) = 0.

Mardesi¢ and Prasolov directly computed, though, that F,(X) is the quotient of coherent
families by trivial families; Hg(X) =0, in other words, iff every coherent family is trivial.
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A number of extensions of H. in turn have been proposed. Prominent among these is
strong homology H.:

@ H. equals H. on CW.
@ H. satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
© H. is a Steenrod-type homology theory.

@ H, is strong-shape-invariant.

It was against this background that Sibe Mardesi¢ and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply H, additive on CW, and for finite sums, respectively. So Mardesi¢ and
Prasolov began by considering the strong homology of an infinite countable sum Y of
Hawaiian earrings X.

Fx(X) = 0.

Mardesi¢ and Prasolov directly computed, though, that F,(X) is the quotient of coherent
families by trivial families; Hg(X) =0, in other words, iff every coherent family is trivial.
But this, as they and others would show, is a question independent of ZFC.
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Coherence vs. Triviality
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