Strong Homology

Jeffrey Bergfalk

Winter School

February 2016

Theorem (Eilenberg Steenrod 1945)

Exactly one homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of finite CW-complexes.

2016

Theorem (Eilenberg Steenrod 1945)

Exactly one homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of finite CW-complexes.

Formal definition [edit]

The Ellenberg–Steenrod axioms apply to a sequence of functors H_n from the category of pairs (X,A) of topological spaces to the category of abelian groups, together with a natural transformation $\partial: H_i(X,A) \to H_{i-1}(A)$ called the **boundary map** (here $H_{i-1}(A)$ is a shorthand for $H_{i-1}(A,\varnothing)$). The axioms are:

- 1. Homotopy: Homotopic maps induce the same map in homology. That is, if $g:(X,A) \to (Y,B)$ is homotopic to $h:(X,A) \to (Y,B)$, then their induced maps are the same.
- 3. Dimension: Let P be the one-point space; then $H_n(P)=0$ for all $n\neq 0$.
- 4. Additivity: If $X=\coprod X_{\alpha}$, the disjoint union of a family of topological spaces X_{α} , then $H_n(X)\cong\bigoplus H_n(X_{\alpha})$.
- 5. **Exactness**: Each pair (X, A) induces a long exact sequence in homology, via the inclusions $i:A\to X$ and $j:X\to (X,A)$:

$$\cdots \rightarrow H_n(A) \xrightarrow{i_n} H_n(X) \xrightarrow{j_n} H_n(X, A) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots$$

If P is the one point space then $H_0(P)$ is called the **coefficient group**. For example, singular homology (taken with integer coefficients, as is most common) has as coefficients the integers.

Bergfalk

Definition

A homology theory H_* is additive if for every n and every

$$X = \coprod_{\alpha \in A} X_{\alpha}$$

the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism

$$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$

Definition

A homology theory H_* is additive if for every n and every

$$X = \coprod_{\alpha \in A} X_{\alpha}$$

the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism

$$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$

Theorem (Milnor 1960)

Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes.

Definition

A homology theory H_* is additive if for every n and every

$$X = \coprod_{\alpha \in A} X_{\alpha}$$

the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism

$$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$

Theorem (Milnor 1960)

Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes.

In other words, there's exactly one way to extend Eilenberg and Steenrod's H_* continuously.

Definition

A homology theory H_* is additive if for every n and every

$$X = \coprod_{\alpha \in A} X_{\alpha}$$

the inclusion maps $i_{\alpha}: X_{\alpha} \to X$ induce an isomorphism

$$i_*: \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$

Theorem (Milnor 1960)

Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes.

In other words, there's exactly one way to extend Eilenberg and Steenrod's H_* continuously.

Henceforth let H_* denote this (unique) extension to CW.

A number of extensions of H_* in turn have been proposed.

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* :

 $m{0}$ \bar{H}_* equals H_* on CW.

- \bullet \bar{H}_* equals H_* on CW.
- \bullet \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X,A).

- \bullet \bar{H}_* equals H_* on CW.
- \bullet \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X,A).
- \bullet \bar{H}_* is a Steenrod-type homology theory.

- \bullet \bar{H}_* equals H_* on CW.
- \bullet \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X,A).
- **3** \bar{H}_* is a Steenrod-type homology theory.
- $m{\Phi}_*$ is strong-shape-invariant.

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* :

- \bullet \bar{H}_* equals H_* on CW.
- **Q** \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
- **3** \bar{H}_* is a Steenrod-type homology theory.
- $m{\Phi}_*$ is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* :

- \bullet \bar{H}_* equals H_* on CW.
- **Q** \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
- \bullet \bar{H}_* is a Steenrod-type homology theory.
- $m{\Phi}_*$ is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively.

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* :

- \bullet \bar{H}_* equals H_* on CW.
- 2 \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
- **3** \bar{H}_* is a Steenrod-type homology theory.
- **4** \bar{H}_* is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$$\bar{H}_2(X)=0.$$

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* :

- \bullet \bar{H}_* equals H_* on CW.
- 2 \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
- **3** \bar{H}_* is a Steenrod-type homology theory.
- **4** \bar{H}_* is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$$\bar{H}_2(X)=0.$$

Mardešić and Prasolov directly computed, though, that $\bar{H}_2(X)$ is the quotient of coherent families by trivial families; $\bar{H}_2(X) = 0$, in other words, iff every coherent family is trivial.

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_* :

- \bullet \bar{H}_* equals H_* on CW.
- 2 \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
- **3** \bar{H}_* is a Steenrod-type homology theory.
- $m{\Phi}_*$ is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$$\bar{H}_2(X)=0.$$

Mardešić and Prasolov directly computed, though, that $\bar{H}_2(X)$ is the quotient of coherent families by trivial families; $\bar{H}_2(X)=0$, in other words, iff every coherent family is trivial. But this, as they and others would show, is a question independent of ZFC.

Coherence vs. Triviality